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Abstract

Large language models readily adapt to novel
settings, even without task-specific training
data. Can their zero-shot capacity be ex-
tended to multimodal inputs? In this work, we
propose ESPER (ExtraSensory PErception
with Reinforcement learning) which extends
language-only zero-shot models to unseen
multimodal tasks, like image and audio cap-
tioning. Our key novelty is to use reinforce-
ment learning to align multimodal inputs to
language model generations without direct su-
pervision: for example, in the image case
our reward optimization relies only on cosine
similarity derived from CLIP (Radford et al.,
2021), and thus requires no additional explic-
itly paired (image, caption) data. Because the
parameters of the language model are left un-
changed, the model maintains its capacity for
zero-shot generalization. Experiments demon-
strate that ESPER outperforms baselines and
prior work on a variety of zero-shot tasks;
these include a new benchmark we collect
and release, ESP dataset, which tasks models
with generating several diversely-styled cap-
tions for each image.

1 Introduction

Zero-shot learning challenges machine learning
models to make inferences for novel tasks not
explicitly seen at training time. Recently, large,
pretrained transformer-based models like GPT-3
(Brown et al., 2020) have achieved impressive zero-
shot capabilities for a diverse set of language gen-
eration and reasoning tasks. However, models like
GPT-3 only accept textual prompts as input.

In this work, we propose a new model,
ExtraSensory PErception with Reinforcement
learning( ESPER), that enables large language
models to accept multimodal inputs like images
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Figure 1: The intuition of ESPER, ExtraSensory
PErception with Reinforcement learning. To better
align knowledge in CLIP and GPT with RL, we give
use CLIP for give rewards for pairs of images and self-
generated text.

and perform broad generation tasks over those in-
puts. In a zero-shot fashion, our model can generate
text diverse in style and context conditioned on an
image, including visual news (Liu et al., 2021a), vi-
sual dialogues (Schwartz, 2021), answers to visual
questions (Antol et al., 2015; Goyal et al., 2017), vi-
sual blog-style posts (Kim et al., 2015), and visual
stories (Huang et al., 2016).

ESPER achieves this by combining insights
from two previously disjoint lines of work: multi-
modal prompt tuning, and reinforcement learning
reward optimization. Like prior multimodal prompt
tuning work, ESPER starts from a base language-
only model (e.g., GPT-2 (Radford et al., 2019)),
keeps most of its parameters frozen and trains a
small number of adaptor parameters to map visual
features into the vocabulary space of the language
model (Tsimpoukelli et al., 2021; Mokady et al.,
2021; Liu et al., 2021b). Unlike prior works, how-
ever, ESPER does not train these parameters using
maximum likelihood estimation over a dataset of
aligned (image, caption) pairs. Instead, it uses a
reinforcement learning objective. During training,
the model is first queried for completions condi-



tioned on visual features. Then, parameters of a
lightweight vision-to-text transformation are up-
dated using proximal policy optimization (PPO)
(Schulman et al., 2017) to maximize a similarity
score computed by a secondary pretrained image-
caption model, CLIP (Radford et al., 2021). The
frozen language model can interpret the multi-
modal inputs in the same context as the initial
word embedding space without additional human-
annotated paired data.

A key advantage of using a reinforcement learn-
ing objective instead of a maximum likelihood ob-
jective is the maintenance of generalizability. Tsim-
poukelli et al. (2021); Mokady et al. (2021) fine-
tune their lightweight visual-to-language adapters
using paired visual-linguistic datasets such as Con-
ceptual Captions (Sharma et al., 2018) or COCO
Captions (Lin et al., 2014). Because these datasets
of literal descriptions cannot match the textual va-
riety of the large-scale corpus GPT-2 is trained on,
the supervised models may not generate as richly
styled language or be capable of as diverse rea-
soning over input contexts (Kumar et al., 2022;
Wortsman et al., 2022).

We experimentally compare ESPER to two
classes of prior methods that seek to adapt language
models to accept visual inputs: (1) maximum like-
lihood prompt tuning (Tsimpoukelli et al., 2021;
Mokady et al., 2021); and (2) decoding-time meth-
ods (Tewel et al., 2021) that post-process token
probabilities of a frozen language model accord-
ing to estimated image similarity. For zero-shot
image/audio captioning, we find that ESPER out-
performs all prior unsupervised methods, both in
terms of generation quality (e.g., 14.6 point im-
provement in CIDEr over Laina et al. (2019) in
COCO unpaired captioning) and inference speed
(e.g., 102× speedup vs Tewel et al. (2021), which
relies on per-token gradient optimization over par-
tial decodings.)

In addition: (1) ESPER exhibits strong zero-shot
adaptability on visual news (Liu et al., 2021a), vi-
sual dialogue dialogue (Das et al., 2017), and a
new zero-shot multimodal generation benchmark
we construct+release called ESP dataset, which
tests model capacity to generate texts of differ-
ent styles for the same image; (2) we show that
ESPER can learn about audio inputs using an audio-
based reward. We hope the strong performance of
ESPER presented here will encourage researchers to
consider RL-based training for future multimodal

prompt tuning work, e.g., as a complement to max
likelihood models like Flamingo-80B (Alayrac
et al., 2022).

2 Method

ESPER consists of three components: 1) CLIP’s
non-generative image/text encoders (Radford et al.,
2021);1 2) GPT-2 (Radford et al., 2019), a left-to-
right language generator; and 3) an encoder that
projects multimodal inputs into the word embed-
ding space of GPT-2.2 During training, CLIP and
GPT-2’s parameters are frozen; gradients are back-
propagated through the frozen language model to
train the encoder parameters. We employ reinforce-
ment learning (specifically, PPO (Schulman et al.,
2017)) to derive these gradients: the reward func-
tion is the similarity of the sampled generations to
the input image, as estimated by CLIP. After RL
training, we evaluate ESPER in various zero-shot
scenarios.

2.1 Architecture

CLIP. Radford et al. (2021)’s Contrastive Lan-
guage Image Pretrained (CLIP) encoder plays two
roles in our framework: first, as a feature extrac-
tor for the input images, and second, as an align-
ment reward scorer between the images and the
model-generated text. First, the CLIP image en-
coder CLIP -I extracts single vector feature from
the image xi. Importantly, we do not update CLIP’s
parameters during training: in practice, we ex-
tract features for all images prior to training for
faster execution. Second, the CLIP text encoder
CLIP -T is applied to text samples the model gen-
erates to support RL training; Combined with the
pre-extracted image representation, this text repre-
sentation is used to compute the reward function
as the cosine similarity between the image and the
model-generated text. While CLIP’s textual rep-
resentations cannot be pre-cached like the image
representations because the model’s generations
are dynamic, because we do not backpropagate gra-
dients to the text network this process is fast and
memory-efficient to run on a GPU.

1While we describe image modeling here, we also experi-
ment with audio/text encoders, specifically Wav2CLIP (Wu
et al., 2022), in § 3.2 that extend ESPER to audio inputs.

2In principle, any models with the same APIs could be
used, e.g., ALIGN (Jia et al., 2021b) could be substituted
for CLIP, or T5 (Raffel et al., 2020) could be substituted for
GPT-2
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Figure 2: Illustration of the proposed model, ESPER. We use a pretrained language model (e.g. GPT-2 (Radford
et al., 2019)) as the language generator

Encoder. The encoder Fφ is the only module
with trainable parameters in ESPER. Given the vec-
tor representation of an image xi extracted using
CLIP, the module outputs a series of vectors of
length k to be passed on to the language model.
The output image representations hi work as the
multimodal prompt and are concatenated to the em-
bedded word representations. We fix the visual
token length in all experiments to k = 10.

h
i
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i
k = Fφ(CLIP -I(xi))

For fair comparison in later experiments, we use
the same multimodal encoder architecture as CLIP-
Cap (Mokady et al., 2021): a lightweight, two-
layer Multi-Layer Perceptron (MLP). The first
layer maps the CLIP encoding dimensions to GPT-
2’s dimensions and the second layer expands the
single vector representation to a series of vector
representations of length k. We use tanh as the
nonlinear activation function between these two
layers. By employing a less expressive encoder
architecture (than, e.g., a transformer), we aim to
demonstrate that the contribution of ESPER does
not rely on the structure/capacity of the encoder
itself.

Pretrained Language Model. ESPER employs
a pretrained deep autoregressive language model
such as GPT-2 (Radford et al., 2019) as the back-
bone. Autoregressive language models parameter-
ize likelihood of a text sequence y comprised of
text tokens yj with length l using autoregressive
decomposition.

pθ(y) =
l

∏
j

pθ(yj∣yj ′<j)

Inspired by prompt tuning in the text-only do-
main (Liu et al., 2021b), we treat the encoded im-
age vector sequence hi as a multimodal prompt

and concatenate it with the text prompt represen-
tation output by GPT-2’s embedding lookup layer
given previous tokens yij ′<j to build the prefix for
the conditioned text generation:

pθ(yi∣hi) =
l

∏
j

pθ(yij∣hi, yij ′)

The text prompt z can be as short as a single word
token for free-form training or contain task-specific
templates for further zero-shot adaption to down-
stream tasks.

The parameters of the language model θ are kept
frozen. However, the encoder parameters φ are up-
dated with the gradients calculated based on the lan-
guage model parameters. Hence, we connect mul-
timodal information to the language model without
modifying the linguistic knowledge stored in the
pretrained weights.

2.2 Training

Reinforcement Learning. Because CLIP does
not provide per-token feedback, there is no directly
differentiable way to train the encoder parameters
to generate captions that CLIP would score highly,
given the input image. Thus, we propose to view
CLIP as a black-box model and apply reinforce-
ment learning to minimize the embedding distance
between the image context and the corresponding
generated text. We use the clipped version of Prox-
imal Policy Optimization (PPO-clip) (Schulman
et al., 2017; Stiennon et al., 2020) for reward op-
timization. From the RL perspective, our GPT-2
generator can be viewed as a policy, which pro-
duces actions (in the form of generations) given
states (in the form of text+image prompts). Our
value model has the same architecture as ESPER;
we use random sampling with temperature 0.7 for
text generation during training.



SocialMedia : @janew Look how shiny is my daughter's hair! The AAA conditioner really works!
News : It's been hard on kids since the lockdowns during the pandemic. They're so used to going to school, 
it's hard for them to stay home all the time. …
Blog : Teaching my daughter to brush her hair by herself has been a challenge. Now, I have finally gotten to 
the point where I sit and talk with her while she combs her hair instead of me doing it for her.
Instruction : Brush hair in even strokes. Use a detangling spray if there are knots that are hard to get out. 
Spraying only a few spurts of the detangling spray will be sufficient.
Story : Abbie realized she had to look good. She took out her comb and start strengthening her hair. It was 
easy for she usually does it without help. The hair she strengthened flattened smoothly.

Figure 3: A sample in Evaluation for Styled Prompt dataset (ESP dataset).

Modality Pairing Reward. The primary objec-
tive of ESPER is to align multimodal inputs to text
generations. Given an input image x and the cor-
responding generated text y, we regard the cosine
similarity between the respective CLIP features as
the pairing reward.

r
p(x, y) ≈ CLIP -I(x)

∣∣CLIP -I(x)∣∣ ⋅
CLIP -T (y)

∣∣CLIP -T (y)∣∣

The actual reward is further normalized to roughly
achieve zero mean and unit variance over the course
of training. In practice, we multiply the cosine
similarity value with a fixed gain (α = 50) and
then add a fixed bias (β = −10).

Language Model Stability. Reward hacking can
potentially occur (Krakovna et al., 2020) if the
agent discovers incoherent texts that nonetheless
achieve high rewards. To defend against this, we in-
corporate a set of auxiliary rewards to stabilize the
training process. First, we compute the KL diver-
gence between pθ and a separate (fixed) text-only
GPT-2 model to maintain language generation capa-
bility. In addition, we found it beneficial to consider
raw text-only likelihood as an additional reward.
Finally, as reported in previous literature (Holtz-
man et al., 2020; Welleck et al., 2019), language
models tend to falsely assign high probability on
repetitive phrases. We introduce an explicit repeti-
tion penalty against this phenomenon. For specifics
on the collection of stability rewards we apply, we
refer interested readers to Appendix B.

2.3 ESPER-Style

Following previous literature on adapting language
models using prompts (Gao et al., 2021), we con-
sider a version of ESPER, where we pre-fine-tune
GPT-2 with a text-only corpus alongside corre-
sponding style prompt prefixes (i.e., "news:",
"story:"). For instance, to train a news gen-
erator we present the model with a news cor-
pus (Liu et al., 2021a) prefixed with the style

prompt ("news:"). In practice, we finetune a sin-
gle GPT on multiple styles. Note that style prompt
training uses only text corpus and does not require
multimodal inputs. We train these style-augmented
GPT-2 generators prior to applying ESPER and pro-
vide them as backbones in place of the uncondi-
tional language models.

3 Experiments

ESP dataset. To benchmark ESPER’s capabil-
ity to generate diverse styles of writing from the
same image, we collect a novel dataset: ESP
dataset (Evaluation for Styled Prompt dataset). ESP
dataset is a benchmark for zero-shot diverse cap-
tion generation. It comprises 4.8k captions from 1k
images in the COCO Captions test set (Lin et al.,
2014). We collect five different writing styles that
are frequently used, namely blog, social media, in-
struction, story, and news, as illustrated in Figure 3.
We defer the details of our data and the correspond-
ing collection process to Section C and Section D
of the Appendix, respectively.

Training. While ESPER could benefit from a
more extensive and diverse set of unpaired images,
for fair comparisons with the baselines, we limit
our data to COCO training set images (unpaired
with their captions). We use AdamW (Loshchilov
and Hutter, 2018) optimizer (β2 = 0.999, ε =
1e − 8) and fix the learning rate to 1e − 5 with
linear decay schedule. The models are trained un-
til there is no improvement in CLIP cosine sim-
ilarity for COCO validation set images up to 50
epochs. Using a single NVIDIA A6000, and
GPT-2-base/CLIP ViT-B/32 as backbone mod-
els, ESPER needs about two days to achieve our
reported evaluation scores.

ESPER Models. In addition to ESPER-Free
(vanilla GPT-2 as the backbone) ESPER-Style, we
experiment with ESPER-MLP, which freezes GPT-
2 part of ESPER-Style and finetunes only the light
MLP encoder but with supervised MSCOCO (im-



Model Style B@4 M C Time (sec/image)

Pseudo-Align (Laina et al., 2019) ✓ 5.2 15.5 29.4 -
RSA (Honda et al., 2021) ✓ 7.6 13.5 31.8 -
Unpaired (Laina et al., 2019) ✓ 19.3 20.1 63.6 -
CLIP-Infer (Tewel et al., 2021) 2.6 11.5 14.6 65s
CLIP-Infer-Style ✓ 7.0 15.4 34.5 65s
CLIP-Retrieval ✓ 4.8 11.2 13.4 0.37s
ESPER-Free (GPT-2) 6.3 13.3 29.1 0.65s
ESPER-Style (GPT-2) ✓ 21.9 21.9 78.2 0.65s

Table 1: Unpaired captioning experiments in COCO test split. B@4 denotes Bleu-4, M METEOR and C CIDEr
score. Running time entails the whole time for each process needed to infer caption for an image, including image
loading and feature extraction. We use greedy decoding for all results in this table.

Model Zero-shot B@4 M C
CLIPCap-MLP 27.4 22.4 94.4
CLIPCap-Full 32.2 27.1 108.4
ESPER-Style ✓ 21.9 21.9 78.2
ESPER-MLP 31.2 25.4 103.1
ESPER-Full 33.1 27.7 111.1

Table 2: Finetuning experiment in COCO Captions test
split.

Model (GPT-2) B@4 M C
Audio Prompt + w2c 0.17 4.03 3.14
Oracle Prompt + w2c 0.80 5.34 7.07
ESPER-Audio-Free 0.36 3.05 4.68
ESPER-Audio-Style 1.21 6.18 9.54

Table 3: Unpaired audio captioning experiments in Au-
dioCaps test split.

age, caption) pairs and ESPER-Full trains the en-
coder and GPT-2 jointly with supervised MSCOCO
(image, caption) pairs. All models use greedy de-
coding to generate descriptions at inference time.

3.1 Evaluation of Visual Alignment

We first evaluate the strength of the alignment be-
tween an input image and the generated text in
ESPER. First, we consider the unsupervised task
of unpaired image captioning (Feng et al., 2019).
Then, we experiment with the usage of the ESPER
in task transfer by comparing the trained weights
with randomly initialized ones in a supervised
setup. Following previous works on unpaired cap-
tioning (Feng et al., 2019; Laina et al., 2019), we
split the pairing between image and caption and
train them separately using ESPER for unsupervised
evaluation. We split COCO Captions dataset (Lin
et al., 2014) with Karpathy split (Karpathy and

News
Model Zero-shot B@4 M C
Show Attend Tell 0.7 4.1 12.2
Text-Only ✓ 0.2 2.7 1.3
ESPER-Style ✓ 0.8 4.4 4.6
ESPER-MLP 1.3 4.8 15.7

Dialog
Model Zero-shot NDCG MRR R@1
ViLBERT ✓ 11.6 6.9 2.6
ViLBERT-Head 19.7 9.8 3.4
Text-Only ✓ 19.3 18.3 5.7
ESPER-Style ✓ 22.3 25.7 14.6

Table 4: Downstream task evaluation in (Visual-
News (Liu et al., 2021a) test split and VisDial (Das
et al., 2017) validation split. NDCG denotes Normal-
ized Discounted Cumulative Gain, MRR Mean Recip-
rocal Rank and R@1 Recall at top 1. All our results on
VisDial are evaluated with the official server.

Fei-Fei, 2015).

3.1.1 Zero-Shot Captioning

In Table 1, we show that ESPER effectively aligns
the image to text without explicitly paired data.
Specifically, we compare to the state-of-the-art un-
paired captioning methods (Honda et al., 2021;
Laina et al., 2019) and variants of CLIP based de-
coding methods: CLIP-Infer (Tewel et al., 2021)
that uses CLIP to guide GPT2 at inference, CLIP-
Infer-Style which runs CLIP-Infer with our style-
augmented GPT2 generator and CLIP-Retrieval
that retrieves caption with the highest CLIP co-
sine similarity from the training data. According
to the standard BLEU-4 (Papineni et al., 2002),
Meteor (Banerjee and Lavie, 2005), and CIDEr
(Vedantam et al., 2015) automatic evaluation met-
rics, ESPER achieves superior performance against



previous state-of-the-art methods and CLIP based
decoding algorithms. As stated in previous liter-
ature (Feng et al., 2019), we also reaffirm that
style of the text affects the automatic evaluation
to a great deal: ESPER-Free, which does not know
COCO caption text style, falls behind ESPER-Style
(which has been pretrained on unaligned COCO
captions, with the prefix caption:).

Finally, note that the computation overhead
of ESPER on inference is almost negligible com-
pared to that of CLIP-Infer, a decoding time
method (Tewel et al., 2021). On inference time,
ESPER’s runtime is comparable to vanilla GPT-2
alone. Only the lightweight encoder needs to run
on top of GPT-2, offering fast inference speed.

3.1.2 Finetuning
As our policy network shares the same architecture
with MLP-variant CLIPCap (Mokady et al., 2021),
we can directly evaluate the contribution of our en-
coder as pretrained weights in a supervised setting.
In Table 2, we show ESPER initialization bests ran-
dom initialization both when updating and fixing
GPT parameters. Thus, our framework can provide
efficient initial alignment between two pretrained
modules.

3.2 Evaluation of Auditory Alignment

We extend ESPER to another modality: audio.
As an auditory counterpart of CLIP, we use
Wav2CLIP (Wu et al., 2022) to score the audio-
linguistic alignment during RL training, but other-
wise, the setup remains the same. Here, we break
the pairing in an audio captioning dataset Audio-
Caps (Kim et al., 2019) to evaluate unpaired audio
captioning performance. We follow an identical
evaluation protocol as in § 3.1, except that we only
use audio as input.

In Table 3, we only report the performance of
GPT-2-based baselines, as the unpaired image base-
lines (Laina et al., 2019; Honda et al., 2021) re-
quire object detectors and cannot be directly ap-
plied. ESPER achieves better results than baseline
models, which first rollout random text samples
conditioned on fixed (e.g. Sound of a) or the
oracle prompts and then select ones with maximal
CLIP cosine similarity. Also, the style prompt tun-
ing positively contributes to ESPER ‘s performance,
increasing CIDEr by 4.86. Wav2CLIP (and pre-
liminary experiments with other audio encoders,
specifically, Guzhov et al. (2022); Wu et al. (2022)
which are also pretrained on an audio classifica-

tion dataset (Gemmeke et al., 2017; Chen et al.,
2020a)) appears to provide less accurate training
signal for ESPER compared to image CLIP pre-
trained on large-scale image caption dataset (Rad-
ford et al., 2021). We expect this is the case not only
because audio classification datasets are relatively
small (Zhao et al., 2021) but also because these
datasets do not offer rich natural language annota-
tions. Still, our model can generate audio-relevant
and plausible captions as described in Figure 8.

3.3 Generalization to Diverse Styles

We now experiment beyond standard image cap-
tioning setups to demonstrate ESPER’s capacity to
generate image-related texts of diverse styles. Here,
we evaluate two styles that can be supported by ex-
isting public corpora: visual news and dialogue.

3.3.1 Visual News

VisualNews (Liu et al., 2021a) includes 1.08 mil-
lion news images along with associated image cap-
tions and articles, sourced from four news sites.
The captions describe the image’s relevance to the
news article instead of simply describing the literal
image contents. For our experiments, we assign
respective style prefixes per news source. For a
fair comparison, we compare ESPER with models
that rely only on image inputs,3 e.g., Show Attend
Tell (Xu et al., 2015), from Liu et al. (2021a). We
also include the text-only style generator without
visual inputs as another baseline (Text-Only).

Results are in Table 4: zero-shot ESPER outper-
forms not only the text-only baseline but also the
supervised baseline in Bleu-4 and METEOR scores.
However, it lags behind the supervised model by
a wide margin in CIDEr terms of CIDEr. We at-
tribute this difference to a combined effect of the
news style and CLIP: while news consists of a myr-
iad of proper nouns, CLIP has not been exposed to
a majority of such terms. As a result, ESPER does
not generate as many proper nouns as in the ground
truth captions, decreasing the CIDEr score, which
takes the rarity of terms into account. By finetun-
ing the adaptor, ESPER overcomes this knowledge
gap and surpasses the baselines even in the CIDEr
score.

3Other baselines for VisualNews generate based on the
article text or keywords as inputs and hence are not directly
comparable to our framework.
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Figure 4: Human evaluation of captions for each style prompt. We take the average of 5-point Likert-scale rating
from three annotators. V denotes visual relevance, I informativeness and F for fluency.
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Figure 5: Evaluation on the ESP dataset. We report
CIDEr in this plot.

3.3.2 Visual Dialogue
VisDial (Das et al., 2017) is a dataset of iterative
dialogues conditioned on an image. Given an im-
age and previous dialogue act, the model is asked
to rank the likelihood of the 100 answer candidates.
After training ESPER with the unpaired dialogue
style generator backbone, we rank the answer can-
didates by likelihood of the answers given the im-
age and the question. We use the validation set for
evaluation for fair comparison against previously
reported zero-shot baseline results (Murahari et al.,
2020). The baselines consist of ViLBERT (Lu et al.,
2019) and frozen ViLBERT (Lu et al., 2019) fine-
tuned with a linear head.

The bottom half of Table 4 shows the VisDial
dataset re-ranking results. Zero-shot ESPER im-
proves the baselines by a margin. It even outper-
forms the supervised ViLBERT-Head, showing that
ESPER is capable of discerning likely visual dia-
logues.

3.4 From One Image to Many Styles

While we observe that ESPER can generate diverse
image-related texts, we still need to prove that this
diversity in style is induced by text prompts. A null
hypothesis is that there are identifiable and con-
sistent features found, e.g., only in news articles.
The model may have exploited this superficial rela-
tion to generating news style captions. ESP dataset

from Section 3 is specifically designed to counter
this hypothesis as it exhibits multiple styled texts
for the same image.

Figure 5 we show that ESPER can generate di-
verse text depending on textual style prompts.
ESPER outperforms CLIPCap-MLP (Mokady et al.,
2021), a COCO-supervised baseline, demonstrat-
ing prompt-conditioned generation is necessary to
handle ESP dataset. Also, the text-only baseline
falls by a wide margin, indicating that the visual-
linguistic alignment is as important as the text di-
versity. Finally, ESPER-Style improves over ESPER-
Free to show the effect of explicit style condition-
ing. For fine-grained results, refer to Table 5 in
Appendix E.

3.5 Human Evaluations on ESP dataset

We conduct a human evaluation on ESPER, CLIP-
Infer4, and CLIP-Infer-Style generated descriptions
as well as ground truth captions that complete
the following six prompts (caption:, social
media:, news:, blog:, instruction:,
story:) We choose random 100 images in ESP
dataset test split and ask English-proficient human
annotators to provide a 5-point Likert-scale if the
sentences: 1) are visually relevant to the image
(Vis), 2) provide informative and interesting con-
tent for the prompt (Inf), 3) and sound fluent and
human-like (Flu). Each sample is evaluated by
three annotators using the Amazon Mechanical
Turk platform. The results are shown in Figure 4.
On average, ESPER provides more visually rele-
vant and informative content in every prompt than
CLIP-Infer. While CLIP-Infer has slightly more
fluent (Flu) descriptions on the story and instruc-
tion prompt, we found that this is likely due to their
descriptions being relatively short, thus having less
room for grammatical errors.

4We use a version of GPT2-base size model to generate
descriptions to be comparable to our generation framework.



(a) Caption : A cat sits on a chair in a park.

Blog : Hey, I've got my cat, a cat that I call "Shelby," and 

I'm not sure if it's a name I've ever heard before.

Social Media : she is sitting on the bench, and she's 

looking at me.

Dialogue : A: what color is the cat B: brown A: is it a cat 

or a dog? B: a brown cat

News : A cat that was found in a park in the city of New 

South Wales has been reunited with its owner. The cat, 

named 'Tiger', was discovered by …

CLIP-Infer : Image of a pet

(b) Caption : A skateboarder is riding a skate board in the air. 

Blog : picture of a skateboarder in a park. The video was 

posted on YouTube on March 25, 2013. 

Social Media : I like to skateboard. I'm a big fan of the 

skateboarding scene.

Dialogue : A: is the skateboarder a man B: yes A: what 

color is his helmet? C: black

News : What is the best way to skateboard? Get to know the 

pros: Discover the top pros in skateboarding.

CLIP-Infer : Image of a Flying saucer is seen in San 

Francisco on the morning of the the first of the year.

(c) 
Caption : The weather is clear and the man is walking.

Blog : I was walking down the street in the rain. I saw a 

man walking in front of a building

Social Media : The weather is so cold and rainy.   

http://tinyurl.com/l4wj4

Dialogue : A: Is it raining? B: no

News : The man who was walking down the street in the 

rain: News, Local, Provincial, Canada, World

CLIP-Infer : Image of a pedestrian.

ESPER : 

ESPER : 

ESPER : 

(d) Caption : A group of people are sitting at a table for food. 

Blog : I've been an audience member for a while, but I never 

found the right audience.

Social Media : Everyone at the conference is wearing their 

best suits.

Dialogue : A: dialogue: A: how many people are there

B: 3 A: are they all sitting B: yes

News : Microsoft's IT team is working on a new mobile 

app: The company has announced that

CLIP-Infer : Image of a conference.

ESPER : 

Figure 6: ESPER Zero-shot image captioning exam-
ples on various style prompts. The conditioning text
prompt is denoted in bold(i.e., “text”). We mark visu-
ally relevant points with green and errors with red.

3.6 Qualitative Results

Figure 6, 7 presents zero-shot captioning results
on COCO images generated by ESPER-style and
CLIP-Infer baseline (Tewel et al., 2021)5.

Figure 6 shows some diverse zero-shot captions
from COCO test split. Conditioning on both image
and prefix, ESPER generates various visually sensi-
ble and informative captions. But Fig 6.(c) and (d)
show inaccurate caption compare to the CLIP-Infer
baseline. In (c), while the monk is holding an um-
brella, we can deduce that it is not raining from the
clear sky. However, ESPER confuses the weather
condition depending on the text prompt. Also, the
model suffers from false bias in visual counting.
((d) Dialogue A: how many people are there B: 3)

Figure 7 shows generation results on the “recipe"

5We used their public demo for qualitative results.
https://replicate.com/yoadtew/zero-shot-image-to-text

(a) ESPER : (Recipe : ) 1. Make a bag of luggage. 2. Put the luggage in the bag. 3. 

Take the suitcase to the airport. 4. Go to your hotel. 5. Get a ticket to go to a restaurant. 

6. Eat at the restaurant and pay for your meal. 7. Return to where you left off. 8. Pay for 

the meal at your destination. 9. You're done. 10. Repeat steps 1-5 until you've paid for 

all your meals.

CLIP-Infer : (Recipe : ) Camp Out Nowak Parking - The Easy Way (with Video!)

(b) ESPER : (Recipe : ) This is a cake made with a mixture of the following 

ingredients:  1 cup of sugar 1/2 cup flour 1 teaspoon baking powder 1 tablespoon baking 

soda 1 egg 1 1⁄2 cups of milk 1 large egg yolk 1 tsp vanilla extract 1 ½ cups (1 stick) 

unsalted butter, softened 1½  cups sugar 2 teaspoons vanilla 1¼  cups powdered sugar. 

CLIP-Infer : (Recipe : ) cake car is made with car. 

(c) ESPER : (Recipe : ) 1. Place the bus in the middle of the street. 2. Turn the corner 

and walk to the right. 3. Walk to your left and turn right again. 4. Go to a building on 

your right and go to another building. 5. Turn right at the building and continue to 

walk. 6. At the end of the walk, you will see a door.

CLIP-Infer : (Recipe: ) The Lazy Busway Trip Home

(b) (a) (c) 

Figure 7: ESPER generation results on custom task
prompts, (Recipe: ). ESPER has never trained on recipe
prompts.

(GT) A woman and a man talking as another man talks softly 

and papers shuffle in the background.

(Ours) The man is talking to a woman in the background.

(GT) Water running from a flushed toilet.

(Ours) A toilet is flushed and flushed again.

(GT) Bells ring followed by humming and vibrations as a 

train passes while blowing a horn.

(Ours) A train is passing by a train station.

(a)

(b)

(c)

Figure 8: ESPER generation results on zero-shot au-
dio captioning. Each image is the keyframe of the orig-
inal video for illustration purposes. ESPER-Audio uses
only audio without visual input.

task prompt that was not previously pre-trained as
a style prompt. ESPER generate not only sensible
cake recipe generation in Fig 7.(b), but also reason-
able “recipe" even when it is not conditioned on
a food image (Fig 7.(a),(c)); similar performance
was observed for “My favorite poem" and “lyrics"
that GPT-2 can generate. In most cases, CLIP-Infer
generally produces short generations; and, because
it wasn’t designed to adapt to individual styles, it
cannot as effectively generalize to custom prompts.
Figure 8 additionally demonstrates that ESPER can
also adapt to the audio via wav2clip rewards.

4 Related Work

Visual-Language Pretraining. Successful vision-
language models pretrained on large-scale image-
text corpora have been proposed, e.g., BERT-
style (Devlin et al., 2019) models Tan and Bansal
(2019); Chen et al. (2020b); Li et al. (2020); Zellers
et al. (2021), encoder-decoder style models, Zhou
et al. (2020); Wang et al. (2021); Jia et al. (2021b)



and constrastive models (Radford et al., 2021; Jia
et al., 2021a). Vision-text models have additionally
been extended to audio (Zhao et al., 2021; Zellers
et al., 2022). TAPM (Yu et al., 2021) adapts vi-
sual encoder and GPT with self-supervised training
objective that predicts causal order of the visual
story.

Multimodal prompt tuning. Prefix tuning (Li
and Liang, 2021) and Prompt tuning (Lester et al.,
2021) simplify finetuning large models by all but
a small number of parameters. Tsimpoukelli et al.
(2021) adapt prefix tuning to images via maximum
likelihood training a small image-to-text adapter
using Conceptual Captions (Sharma et al., 2018).
Like ESPER, CLIPCap (Mokady et al., 2021) com-
bines GPT + CLIP image features to generate im-
age caption. We use the same architecture as in
CLIPCap and fix GPT weights likewise, effectively
following the setup of p-tuning (Liu et al., 2021b).

Unsupervised captioning. To learn visual-
linguistic relationship without paired data,
previous literature draws upon pseudo-pairing
retrieved with visual concept detector (Honda
et al., 2021) or joint image-language embedding
space (Laina et al., 2019). Most related to our work
is Tewel et al. (2021) that uses CLIP image-text
alignment score to guide inference of pretrained
language model without further training.

Reinforcement learning for language tasks. In
image captioning, RL has been used to resolve
the discrepancy between training and inference
data (Ranzato et al., 2016; Bengio et al., 2015) or
to optimize discrete language metrics directly (Ren-
nie et al., 2017). Storytelling models employ RL
to maintain coherence in the story (Tambwekar
et al., 2019) or incorporate human feedback (Mar-
tin et al., 2017). RL is also proven effective in
goal-driven dialogue (Ammanabrolu et al., 2022a),
interactive QA (Yuan et al., 2019), grounded gen-
eration in text games (Hausknecht et al., 2020;
Wang* et al., 2022) and value alignment to hu-
man preferences (Nahian et al., 2020; Hendrycks
et al., 2021; Ammanabrolu et al., 2022b). Recently,
Instruction GPT (Ouyang et al., 2022) shows RL
can improve prompt-conditioned generation quality
of pretrained language models. To the best of our
knowledge, ESPER is the first method to use mul-
timodal reward to align images to pretrained lan-
guage models; while Cho et al. (2022) used CLIP
rewards as well they finetune an already trained

image captioning model instead of a general large
language model.

5 Conclusion

ESPER combines language generation capabil-
ity in GPT-2 with multimodal knowledge in CLIP
to build a diverse image-conditioned text genera-
tor: instead of maximum likelihood training, we
train via reinforcement learning rewards. We note
that the RL objective we consider can be used in
conjunction with multimodal prompt tuning (Tsim-
poukelli et al., 2021) and zero-shot captioning with
CLIP guidance (Tewel et al., 2021).

Future work includes:
1. enhancing ESPER so that it can simultaneously

maximize rewards for multiple modalities (Im-
age, Audio, OCR, Motion in video, etc.);

2. scaling up the CLIP and GPT-2 backbones to
larger variants; and

3. exploring the utility of ESPER as a data augmen-
tation tool for multimodal reasoning tasks.
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A Language Model Backbones

Figure 9: Annotation interface of ESP dataset.

ESPER-Free. We use GPT-2-base (Radford et al.,
2019) as the language model backbone for all ex-
periments. Since GPT-2 does not have a special
start-of-sentence token, we provide a random single
token as an initial text prompt to start generation on.
This initial token is sampled from GPT-2 vocab-
ulary with sampling weight computed with token
frequency.

ESPER-Style. As summarized in Section 2.3, we
finetune GPT-2 on text-only corpus with style

prompts to prepare the style generator backbones.
The style prompts and corresponding text corpus
sources include:

• caption: COCO Caption (Lin et al., 2014)

• social media:

– Sentiment140 (Go et al., 2009)

– MDID (Kruk et al., 2019)

– TweetEval (Barbieri et al., 2020)

• news: GoodNews (Biten et al., 2019)

• blog: Blog Authorship (Schler et al., 2006)

• instruction: WikiHow (Koupaee and
Wang, 2018)

• story:

– ROCStories (Mostafazadeh et al., 2016)

– TimeTravel (Qin et al., 2019)

For visual news generation, we use dif-
ferent style prompt per news source (bbc:,
guardian:, usa today:, washington
post:) to reflect writing style differences be-
tween media in VisualNews dataset (Liu et al.,
2021a).

B Language Model RL Training

KL Divergence. By constraining KL divergence
between the online policy and the initial language
model, we aim to maintain salience of the gener-
ated text. Here, we simply optimize the difference
between the log likelihood of the online policy and
the initial policy for each token generated.

Reference Entropy. To constrain deviation from
text generation capability, we first compute text-
only log likelihood using either the pretrained text
style generator or the vanilla language model. Then,
we penalize the model whenever the text-only neg-
ative log likelihood of a generated token exceeds
a predefined threshold τe =

70
l

, where l is the
length of the generated sequence. We take inverse
of the difference between negative log likelihood
and threshold and optimize it as a reward. In prac-
tice, we further scale this reward with fixed gain
αe = 0.1.



Social Media News Blog Instruction Story Total
Model Prompt B M C B M C B M C B M C B M C B M C
Text-Only ✓ 0.2 3.7 3.9 0.0 2.2 1.6 0.3 4.1 4.9 0.0 4.0 3.3 0.3 4.7 5.9 0.1 3.7 3.9

ClipCap-MLP 0.0 3.9 6.8 0.0 4.8 7.5 0.3 4.0 6.6 0.3 4.2 7.6 0.0 4.3 7.3 0.1 4.2 7.2
✓ 0.2 3.0 3.3 0.2 3.9 4.5 0.0 2.9 3.4 0.5 4.8 6.5 0.0 4.4 7.1 0.2 3.8 5.0

ESPER-Free ✓ 0.6 5.6 12.5 0.6 5.5 9.9 0.7 6.2 14.4 0.7 5.6 14.1 0.6 5.7 13.0 0.6 5.7 12.8
ESPER-Style ✓ 0.6 5.8 16.9 0.7 5.7 13.0 0.7 6.7 19.2 0.7 5.7 18.0 1.2 7.5 25.0 0.8 6.3 18.4

Table 5: Style-wise experiment results on ESP dataset. B denotes Bleu-4 score.

Caption Social Media News Blog Instruction Story Total
Model Vis. Inf. Flu. Vis. Inf. Flu. Vis. Inf. Flu. Vis. Inf. Flu. Vis. Inf. Flu. Vis. Inf. Flu. Vis. Inf. Flu.
Clip-Infer 1.98 2.34 3.62 - - - - - - - - - - - - - - - - - -
Clip-Infer-Style 2.11 2.33 4.01 1.56 1.73 3.48 1.64 1.76 2.73 1.21 1.16 3.06 1.67 1.85 4.09 2.07 2.23 4.35 1.72 1.85 3.38
ESPER-Style 3.67 3.27 4.12 3.69 3.11 4.10 3.24 2.90 3.46 3.49 3.06 4.12 3.06 2.71 3.53 3.76 3.41 4.13 3.48 3.08 3.91
Human 4.47 3.96 4.34 4.32 4.14 4.28 4.21 4.19 4.33 4.60 4.41 4.62 4.32 4.04 4.28 4.17 4.16 4.36 4.35 4.15 4.36

Table 6: Human evaluation of captions for each style prompt. We take the average of 5-point Likert-scale rating
from three annotators. Vis. denotes visual relevance, Inf. informativeness and Flu. for fluency.

Repetition Penalty. This reward penalizes the
model for generating repeated n-grams. Given
GPT tokenizer, we count repeated (1, 2, 3)-grams.
Specifically, we subtract the number unique of n-
grams from that of all n-grams to count repetitions.
Then we compute a weighted sum of the n-gram
repetition counts and scale the combined score with
fixed gain αr = 0.025 and bias βr = 0.

C Details on ESP dataset

There are multiple ways to describe an image de-
pending on the context and intent of the author. We
refer to these multiple methods as styles. Previous
works focus on the sentiment of a caption like pos-
itive & negative (Mathews et al., 2016), romantic
& humorous (Gan et al., 2017), and various person-
alities (Shuster et al., 2019). However, style does
not solely depend on sentiments and emotions: it
comprises every choice of text type, structure and
vocabulary used to convey intended meaning of the
writer. As intention of a writer depends on where
the one’s interest lies, different information of the
same visual cue would be illustrated on each style
of writing.

For example, consider an image of a boy with
a bow tie singing as part of a choir on a stage.
While this image may have been uploaded by the
singer’s sibling with a caption like “go bro, love the
bowtie!", a local news article about the same con-
cert might instead write: “the choir’s performance
on August 17th went off without a hitch." Because
different styles of writing may focus on different as-
pects of an image, and styles may not be fully trans-
latable via text-only operators such as text style
transfer, e.g., “go bro, love the bowtie!" doesn’t

mention anything about a choir performance.

We thus collect ESP dataset to explore broad
range of text styles conditioned on the same image.
Using Amazon Mechanical Turk, we ask the anno-
tators to write captions relevant to an image while
following writing styles mentioned above. An im-
age cost about $0.3 to annotate, which translates to
$7-28 of payment per a work hour depending on
the proficiency of the worker. The average length
of ESP dataset is 28.4 words (2.3 sentences), and
the collected captions are filtered with respect to
their adherence to given images and styles.

D ESP dataset Collection Process

We use Amazon Mechanical Turk to collect cap-
tions as shown in Figure 9. For images in COCO
Captions test set with respect to Karpathy split, we
randomly select images with one to five annotated
objects to select images with salient but not noisy
context. We ask the annotators to write sentences
that are relevant to the image while following the
mentioned writing style. We provide examples
from well-constructed datasets as references, as
listed in text corpus sources of Appendix A. We
ask the annotators to write no less than 30 words,
but for writing styles with shorter text like social
media and news, we lower the bar from 30 to 10
words. We also regularly monitor the collection so
that only the workers with fluency and understand-
ing of style can participate in the process. In total,
189 workers participated in the collection process.
The collected dataset is filtered by manually ver-
ifying whether the captions are relevant to given
images and styles.



E ESP dataset Experiment Details

We compare ESPER against three baselines in this
experiment. The first is a text-only baseline. We
use the pretrained text style generator with random
sampling to generate the candidate texts. The rest
two baselines (Mokady et al., 2021) are trained on
a caption supervision dataset (COCO captions) and
share the same architecture as our ESPER. As the
supervised baselines are not intended for prompt
conditioning, we report evaluation results both with
and without the style prompts for them. When not
using the style prompts, we fix the prompt to "Im-
age of a", following the recommended approach in
literature (Mokady et al., 2021). For fair compar-
ison against the baselines trained with supervised
dataset of limited length (ClipCap-MLP), we trun-
cate all text including the ground truth captions to
the first 20 byte-pair tokens with GPT tokenizer.
Note that all compared methods share the same tok-
enization scheme as the vanilla GPT2 and hence the
truncation does not favour any specific approach.

We report the evaluation results in Table 5. For
clarification, the scores in Table 5 include and ex-
pand upon the summarized results in Figure 5.
ESPER shows flexible adaptability to each style
without being exposed to any paired image-text
data of the given styles. On the other hand, the
supervised baselines exhibit limited generalizabil-
ity to diverse text styles even when conditioned on
style prompts. The total score is computed as the
mean over metrics of each style, without consider-
ing sample size difference.

F Additional Qualitative Samples

In Figure 10- 11, we displays ESPER generation re-
sults conditioned on custom prompts such as (This
is my favorit poem) or (I created lyrics). The con-
ditioning text prompt is denoted as bold font en-
closed with parenthesis (i.e., "(text)"). To quali-
tatively emphasize the randomness of our results,
we provided the model with progressively growing
prompts.

(a) 

(a) (This is my favorite poem : )
I love the way the pitcher swings his bat. I like the fact that the ball is so quick to 
come out of his hand. I like how he can hit the baseball with his left hand, but he's not 
a great hitter with the right.
(This is my) first time seeing a baseball game. I've never seen a game like this before. 
The game was so fast and exciting. It was like watching a movie.
(This) is a photo of a baseball player in a uniform. urlLink This is the player's name. 
urlLink
(I) was in the batter's box, and I was trying to hit the ball. I hit it, but it went out of the 
park. 

(b) (This is my favorite poem : )
I am a giraffe, I have a heart, and I love the giraffes. I am the heart of the world, , the 
sun of my life, my heart is the sky, and the earth is my home, and the moon is mine
(This is my) favorite giraffe in the world. I love it. It's so cute. I love the way it looks. 
The way the ears are. And the tail. That's the best part.
(This) is a picture of a giraffe in a zoo. The giraffes are in the wild. They are not in 
captivity. The girafen are the largest of the girurans. It is estimated that there are about 
1,000 of them in the wild. The giraffe is the only mammal that can walk on two legs.
(I) was in the zoo with my family, and I was very excited to see the giraffe. I had never 
seen a giraffe before, but I knew it was a big animal. It was so big, it looked like a 
lion.
(My favorite lyric : )" I love the giraffes, they are the best in the world. They are so 
cute, and they have such a sweet personality. "

(b) (c) 

(c) (This is my favorite poem : )
I have a craving for pizza. I've been craving pizza for a long time. It's been a while 
since I had a pizza, but I'm finally getting one. And I love it.
(This is my) first time eating pizza. I'm not sure if I'll ever eat pizza again.
(This) is a very good pizza. I love the crust and the cheese. The sauce is good, but I 
would have preferred a little more pepper. It's not bad, just not my favorite.
(I) am not sure if I'm going to eat a pizza today, but I think I'll eat it anyway. I've been 
eating pizza for years, and I love it. 

Figure 10: ESPER generation results conditioned on
custom prompts.

(a) 

(a) (I created lyrics: )
I'm a baby elephant, I have a big head, and I am a little elephant.
I'm not a child, but I do have big ears. I can hear you
(I created) this blog to share the news of elephants and other animals in the area. I 
hope you enjoy it. I am a member of the Elephant Conservation Society of America 
(ECSA)
(I) was very surprised to find that the zoo had not yet opened a new exhibit.  We had 
been told that it would be open in the fall,

(b) (I created lyrics: )
I created lyrics: I don't know, no, it's so beautiful in the ocean, so serene, and I'm so 
happy to be here.
(I created) a number of Facebook posts about the boat that I was visiting, and I began 
writing them. The first post was about how I had been told that the ship was going to 
be sunk
(I), along with other senior citizens, drove the small boats to the port of the morning. 
There, they were met by a group of men in civilian clothes, who told them that they 
had been ordered

(b) (c) 

(c) (Question : )
So, what is the purpose of surfing?   I think it's to get out of the house and get away 
from the world.  I think that's the main reason why I surf
(Lyrics:) I'm surfing in the water. I can't see the ocean.
I'm riding in a boat. It's dark. The waves are high. My heart is pounding.
(Recipe:) urlLink This is a very simple surfboard trick. You can use it to make a surf 
board that is very easy to build. It is made of a piece of wood, 
(Why) is it so hard to surf in the water?
The answer is that the waves are so big that they are impossible to see. The waves can 
be seen from the shore

Figure 11: ESPER generation results conditioned on
custom prompts.


