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Abstract

Large language models readily adapt to novel
settings, even without task-specific training
data. Can their zero-shot capacity be ex-
tended to multimodal inputs? In this work, we
propose ESPER (ExtraSensory PErception
with Reinforcement learning) which extends
language-only zero-shot models to unseen
multimodal tasks, like image and audio cap-
tioning. Our key novelty is to use reinforce-
ment learning to align multimodal inputs to
language model generations without direct su-
pervision: for example, in the image case
our reward optimization relies only on cosine
similarity derived from CLIP (Radford et al.,
2021), and thus requires no additional explic-
itly paired (image, caption) data. Because the
parameters of the language model are left un-
changed, the model maintains its capacity for
zero-shot generalization. Experiments demon-
strate that ESPER outperforms baselines and
prior work on a variety of zero-shot tasks;
these include a new benchmark we collect
and release, ESP dataset, which tasks models
with generating several diversely-styled cap-
tions for each image.

1 Introduction

Zero-shot learning challenges machine learning
models to make inferences for novel tasks not
explicitly seen at training time. Recently, large,
pretrained transformer-based models like GPT-3
(Brown et al., 2020) have achieved impressive zero-
shot capabilities for a diverse set of language gen-
eration and reasoning tasks. However, models like
GPT-3 only accept textual prompts as input.

In this work, we propose a new model,
ExtraSensory PErception with Reinforcement
learning( ESPER), that enables large language
models to accept multimodal inputs like images
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Figure 1: The intuition of ESPER, ExtraSensory
PErception with Reinforcement learning. To better
align knowledge in CLIP and GPT with RL, we give
use CLIP for give rewards for pairs of images and self-
generated text.

and perform broad generation tasks over those in-
puts. In a zero-shot fashion, our model can generate
text diverse in style and context conditioned on an
image, including visual news (Liu et al., 2021a), vi-
sual dialogues (Schwartz, 2021), answers to visual
questions (Antol et al., 2015; Goyal et al., 2017), vi-
sual blog-style posts (Kim et al., 2015), and visual
stories (Huang et al., 2016).

ESPER achieves this by combining insights
from two previously disjoint lines of work: multi-
modal prompt tuning, and reinforcement learning
reward optimization. Like prior multimodal prompt
tuning work, ESPER starts from a base language-
only model (e.g., GPT-2 (Radford et al., 2019)),
keeps most of its parameters frozen and trains a
small number of adaptor parameters to map visual
features into the vocabulary space of the language
model (Tsimpoukelli et al., 2021; Mokady et al.,
2021; Liu et al., 2021b). Unlike prior works, how-
ever, ESPER does not train these parameters using
maximum likelihood estimation over a dataset of
aligned (image, caption) pairs. Instead, it uses a
reinforcement learning objective. During training,
the model is first queried for completions condi-



tioned on visual features. Then, parameters of a
lightweight vision-to-text transformation are up-
dated using proximal policy optimization (PPO)
(Schulman et al., 2017) to maximize a similarity
score computed by a secondary pretrained image-
caption model, CLIP (Radford et al., 2021). The
frozen language model can interpret the multi-
modal inputs in the same context as the initial
word embedding space without additional human-
annotated paired data.

A key advantage of using a reinforcement learn-
ing objective instead of a maximum likelihood ob-
jective is the maintenance of generalizability. Tsim-
poukelli et al. (2021); Mokady et al. (2021) �ne-
tune their lightweight visual-to-language adapters
using paired visual-linguistic datasets such as Con-
ceptual Captions (Sharma et al., 2018) or COCO
Captions (Lin et al., 2014). Because these datasets
of literal descriptions cannot match the textual va-
riety of the large-scale corpus GPT-2 is trained on,
the supervised models may not generate as richly
styled language or be capable of as diverse rea-
soning over input contexts (Kumar et al., 2022;
Wortsman et al., 2022).

We experimentally compareESPERto two
classes of prior methods that seek to adapt language
models to accept visual inputs: (1) maximum like-
lihood prompt tuning (Tsimpoukelli et al., 2021;
Mokady et al., 2021); and (2) decoding-time meth-
ods (Tewel et al., 2021) that post-process token
probabilities of a frozen language model accord-
ing to estimated image similarity. For zero-shot
image/audio captioning, we �nd thatESPERout-
performs all prior unsupervised methods, both in
terms of generation quality (e.g.,14:6 point im-
provement in CIDEr over Laina et al. (2019) in
COCO unpaired captioning) and inference speed
(e.g.,102� speedup vs Tewel et al. (2021), which
relies on per-token gradient optimization over par-
tial decodings.)

In addition: (1)ESPERexhibits strong zero-shot
adaptability on visual news (Liu et al., 2021a), vi-
sual dialogue dialogue (Das et al., 2017), and a
new zero-shot multimodal generation benchmark
we construct+release called ESP dataset, which
tests model capacity to generate texts of differ-
ent styles for thesameimage; (2) we show that
ESPERcan learn about audio inputs using an audio-
based reward. We hope the strong performance of
ESPERpresented here will encourage researchers to
consider RL-based training for future multimodal

prompt tuning work, e.g., as a complement to max
likelihood models like Flamingo-80B (Alayrac
et al., 2022).

2 Method

ESPERconsists of three components: 1) CLIP's
non-generative image/text encoders (Radford et al.,
2021);1 2) GPT-2 (Radford et al., 2019), a left-to-
right language generator; and 3) an encoder that
projects multimodal inputs into the word embed-
ding space of GPT-2.2 During training, CLIP and
GPT-2's parameters are frozen; gradients are back-
propagated through the frozen language model to
train the encoder parameters. We employ reinforce-
ment learning (speci�cally, PPO (Schulman et al.,
2017)) to derive these gradients: the reward func-
tion is the similarity of the sampled generations to
the input image, as estimated by CLIP. After RL
training, we evaluateESPERin various zero-shot
scenarios.

2.1 Architecture

CLIP. Radford et al. (2021)'s Contrastive Lan-
guage Image Pretrained (CLIP) encoder plays two
roles in our framework: �rst, as a feature extrac-
tor for the input images, and second, as an align-
ment reward scorer between the images and the
model-generated text. First, the CLIP image en-
coderCLIP -I extracts single vector feature from
the imagex i . Importantly, we do not update CLIP's
parameters during training: in practice, we ex-
tract features for all images prior to training for
faster execution. Second, the CLIP text encoder
CLIP -T is applied to text samples the model gen-
erates to support RL training; Combined with the
pre-extracted image representation, this text repre-
sentation is used to compute the reward function
as the cosine similarity between the image and the
model-generated text. While CLIP's textual rep-
resentations cannot be pre-cached like the image
representations because the model's generations
are dynamic, because we do not backpropagate gra-
dients to the text network this process is fast and
memory-ef�cient to run on a GPU.

1While we describe image modeling here, we also experi-
ment with audio/text encoders, speci�cally Wav2CLIP (Wu
et al., 2022), in § 3.2 that extendESPERto audio inputs.

2In principle, any models with the same APIs could be
used, e.g., ALIGN (Jia et al., 2021b) could be substituted
for CLIP, or T5 (Raffel et al., 2020) could be substituted for
GPT-2



Figure 2: Illustration of the proposed model,ESPER. We use a pretrained language model (e.g. GPT-2 (Radford
et al., 2019)) as the language generator

Encoder. The encoderF� is the only module
with trainable parameters inESPER. Given the vec-
tor representation of an imagex i extracted using
CLIP, the module outputs a series of vectors of
lengthk to be passed on to the language model.
The output image representationshi work as the
multimodal prompt and are concatenated to the em-
bedded word representations. We �x the visual
token length in all experiments tok � 10.

hi � hi
1; : : : ; hi

k � F� � CLIP -I � x i ��

For fair comparison in later experiments, we use
the same multimodal encoder architecture as CLIP-
Cap (Mokady et al., 2021): a lightweight, two-
layer Multi-Layer Perceptron (MLP). The �rst
layer maps the CLIP encoding dimensions to GPT-
2's dimensions and the second layer expands the
single vector representation to a series of vector
representations of lengthk. We usetanh as the
nonlinear activation function between these two
layers. By employing a less expressive encoder
architecture (than, e.g., a transformer), we aim to
demonstrate that the contribution ofESPERdoes
not rely on the structure/capacity of the encoder
itself.

Pretrained Language Model. ESPERemploys
a pretrained deep autoregressive language model
such as GPT-2 (Radford et al., 2019) as the back-
bone. Autoregressive language models parameter-
ize likelihood of a text sequencey comprised of
text tokensyj with lengthl using autoregressive
decomposition.

p� � y� �
l

5
j

p� � yj ¶yj ¬$j �

Inspired by prompt tuning in the text-only do-
main (Liu et al., 2021b), we treat the encoded im-
age vector sequencehi as a multimodal prompt

and concatenate it with the text prompt represen-
tation output by GPT-2's embedding lookup layer
given previous tokensyi

j ¬$j to build the pre�x for
the conditioned text generation:

p� � yi ¶hi � �
l

5
j

p� � yi
j ¶hi ; yi

j ¬�

The text promptz can be as short as a single word
token for free-form training or contain task-speci�c
templates for further zero-shot adaption to down-
stream tasks.

The parameters of the language model� are kept
frozen. However, the encoder parameters� are up-
dated with the gradients calculated based on the lan-
guage model parameters. Hence, we connect mul-
timodal information to the language model without
modifying the linguistic knowledge stored in the
pretrained weights.

2.2 Training

Reinforcement Learning. Because CLIP does
not provide per-token feedback, there is no directly
differentiable way to train the encoder parameters
to generate captions that CLIP would score highly,
given the input image. Thus, we propose to view
CLIP as a black-box model and apply reinforce-
ment learning to minimize the embedding distance
between the image context and the corresponding
generated text. We use the clipped version of Prox-
imal Policy Optimization (PPO-clip) (Schulman
et al., 2017; Stiennon et al., 2020) for reward op-
timization. From the RL perspective, our GPT-2
generator can be viewed as a policy, which pro-
duces actions (in the form of generations) given
states (in the form of text+image prompts). Our
value model has the same architecture asESPER;
we use random sampling with temperature0:7 for
text generation during training.



Figure 3: A sample inEvaluation forStyledPrompt dataset (ESP dataset).

Modality Pairing Reward. The primary objec-
tive of ESPERis to align multimodal inputs to text
generations. Given an input imagex and the cor-
responding generated texty, we regard the cosine
similarity between the respective CLIP features as
the pairing reward.

r p� x; y� �
CLIP -I � x�

¶¶CLIP -I � x�¶¶
�

CLIP -T� y�
¶¶CLIP -T� y�¶¶

The actual reward is further normalized to roughly
achieve zero mean and unit variance over the course
of training. In practice, we multiply the cosine
similarity value with a �xed gain (� � 50) and
then add a �xed bias (� � � 10� .

Language Model Stability. Reward hacking can
potentially occur (Krakovna et al., 2020) if the
agent discovers incoherent texts that nonetheless
achieve high rewards. To defend against this, we in-
corporate a set of auxiliary rewards to stabilize the
training process. First, we compute the KL diver-
gence betweenp� and a separate (�xed) text-only
GPT-2 model to maintain language generation capa-
bility. In addition, we found it bene�cial to consider
raw text-only likelihood as an additional reward.
Finally, as reported in previous literature (Holtz-
man et al., 2020; Welleck et al., 2019), language
models tend to falsely assign high probability on
repetitive phrases. We introduce an explicit repeti-
tion penalty against this phenomenon. For speci�cs
on the collection of stability rewards we apply, we
refer interested readers to Appendix B.

2.3 ESPER-Style

Following previous literature on adapting language
models using prompts (Gao et al., 2021), we con-
sider a version ofESPER, where we pre-�ne-tune
GPT-2 with a text-only corpus alongside corre-
sponding style prompt pre�xes (i.e., "news:" ,
"story:" ). For instance, to train a news gen-
erator we present the model with a news cor-
pus (Liu et al., 2021a) pre�xed with the style

prompt ("news:" ). In practice, we �netune a sin-
gle GPT on multiple styles. Note that style prompt
training uses only text corpus and does not require
multimodal inputs. We train these style-augmented
GPT-2 generators prior to applyingESPERand pro-
vide them as backbones in place of the uncondi-
tional language models.

3 Experiments

ESP dataset. To benchmark ESPER's capabil-
ity to generate diverse styles of writing from the
sameimage, we collect a novel dataset: ESP
dataset (Evaluation forStyledPrompt dataset). ESP
dataset is a benchmark for zero-shot diverse cap-
tion generation. It comprises 4.8k captions from 1k
images in the COCO Captions test set (Lin et al.,
2014). We collect �ve different writing styles that
are frequently used, namely blog, social media, in-
struction, story, and news, as illustrated in Figure 3.
We defer the details of our data and the correspond-
ing collection process to Section C and Section D
of the Appendix, respectively.

Training. While ESPERcould bene�t from a
more extensive and diverse set of unpaired images,
for fair comparisons with the baselines, we limit
our data to COCO training set images (unpaired
with their captions). We use AdamW (Loshchilov
and Hutter, 2018) optimizer (� 2 � 0:999, � �
1e � 8) and �x the learning rate to1e � 5 with
linear decay schedule. The models are trained un-
til there is no improvement in CLIP cosine sim-
ilarity for COCO validation set images up to 50
epochs. Using a single NVIDIA A6000, and
GPT-2-base/CLIPViT-B/32 as backbone mod-
els, ESPERneeds about two days to achieve our
reported evaluation scores.

ESPERModels. In addition to ESPER-Free
(vanilla GPT-2 as the backbone)ESPER-Style, we
experiment withESPER-MLP, which freezes GPT-
2 part ofESPER-Style and �netunes only the light
MLP encoder but with supervised MSCOCO (im-



Model Style B@4 M C Time (sec/image)

Pseudo-Align (Laina et al., 2019) ³ 5.2 15.5 29.4 -
RSA (Honda et al., 2021) ³ 7.6 13.5 31.8 -
Unpaired (Laina et al., 2019) ³ 19.3 20.1 63.6 -
CLIP-Infer (Tewel et al., 2021) 2.6 11.5 14.6 65s
CLIP-Infer-Style ³ 7.0 15.4 34.5 65s
CLIP-Retrieval ³ 4.8 11.2 13.4 0.37s

ESPER-Free (GPT-2) 6.3 13.3 29.1 0.65s
ESPER-Style (GPT-2) ³ 21.9 21.9 78.2 0.65s

Table 1: Unpaired captioning experiments in COCO test split. B@4 denotes Bleu-4, M METEOR and C CIDEr
score. Running time entails the whole time for each process needed to infer caption for an image, including image
loading and feature extraction. We use greedy decoding for all results in this table.

Model Zero-shot B@4 M C
CLIPCap-MLP 27.4 22.4 94.4
CLIPCap-Full 32.2 27.1 108.4

ESPER-Style ³ 21.9 21.9 78.2
ESPER-MLP 31.2 25.4 103.1
ESPER-Full 33.1 27.7 111.1

Table 2: Finetuning experiment in COCO Captions test
split.

Model (GPT-2) B@4 M C
Audio Prompt + w2c 0.17 4.03 3.14
Oracle Prompt + w2c 0.80 5.34 7.07

ESPER-Audio-Free 0.36 3.05 4.68
ESPER-Audio-Style 1.21 6.18 9.54

Table 3: Unpaired audio captioning experiments in Au-
dioCaps test split.

age, caption) pairs andESPER-Full trains the en-
coder and GPT-2 jointly with supervised MSCOCO
(image, caption) pairs. All models use greedy de-
coding to generate descriptions at inference time.

3.1 Evaluation of Visual Alignment

We �rst evaluate the strength of the alignment be-
tween an input image and the generated text in
ESPER. First, we consider the unsupervised task
of unpaired image captioning (Feng et al., 2019).
Then, we experiment with the usage of theESPER
in task transfer by comparing the trained weights
with randomly initialized ones in a supervised
setup. Following previous works on unpaired cap-
tioning (Feng et al., 2019; Laina et al., 2019), we
split the pairing between image and caption and
train them separately usingESPERfor unsupervised
evaluation. We split COCO Captions dataset (Lin
et al., 2014) with Karpathy split (Karpathy and

News
Model Zero-shot B@4 M C
Show Attend Tell 0.7 4.1 12.2
Text-Only ³ 0.2 2.7 1.3

ESPER-Style ³ 0.8 4.4 4.6
ESPER-MLP 1.3 4.8 15.7

Dialog
Model Zero-shot NDCG MRR R@1
ViLBERT ³ 11.6 6.9 2.6
ViLBERT-Head 19.7 9.8 3.4
Text-Only ³ 19.3 18.3 5.7

ESPER-Style ³ 22.3 25.7 14.6

Table 4: Downstream task evaluation in (Visual-
News (Liu et al., 2021a) test split and VisDial (Das
et al., 2017) validation split. NDCG denotes Normal-
ized Discounted Cumulative Gain, MRR Mean Recip-
rocal Rank and R@1 Recall at top 1. All our results on
VisDial are evaluated with the of�cial server.

Fei-Fei, 2015).

3.1.1 Zero-Shot Captioning

In Table 1, we show thatESPEReffectively aligns
the image to text without explicitly paired data.
Speci�cally, we compare to the state-of-the-art un-
paired captioning methods (Honda et al., 2021;
Laina et al., 2019) and variants of CLIP based de-
coding methods: CLIP-Infer (Tewel et al., 2021)
that uses CLIP to guide GPT2 at inference, CLIP-
Infer-Style which runs CLIP-Infer with our style-
augmented GPT2 generator and CLIP-Retrieval
that retrieves caption with the highest CLIP co-
sine similarity from the training data. According
to the standard BLEU-4 (Papineni et al., 2002),
Meteor (Banerjee and Lavie, 2005), and CIDEr
(Vedantam et al., 2015) automatic evaluation met-
rics,ESPERachieves superior performance against



previous state-of-the-art methods and CLIP based
decoding algorithms. As stated in previous liter-
ature (Feng et al., 2019), we also reaf�rm that
style of the text affects the automatic evaluation
to a great deal:ESPER-Free, which does not know
COCO caption text style, falls behindESPER-Style
(which has been pretrained on unaligned COCO
captions, with the pre�xcaption: ).

Finally, note that the computation overhead
of ESPERon inference is almost negligible com-
pared to that of CLIP-Infer, a decoding time
method (Tewel et al., 2021). On inference time,
ESPER's runtime is comparable to vanilla GPT-2
alone. Only the lightweight encoder needs to run
on top of GPT-2, offering fast inference speed.

3.1.2 Finetuning

As our policy network shares the same architecture
with MLP-variant CLIPCap (Mokady et al., 2021),
we can directly evaluate the contribution of our en-
coder as pretrained weights in a supervised setting.
In Table 2, we showESPERinitialization bests ran-
dom initialization both when updating and �xing
GPT parameters. Thus, our framework can provide
ef�cient initial alignment between two pretrained
modules.

3.2 Evaluation of Auditory Alignment

We extendESPERto another modality: audio.
As an auditory counterpart of CLIP, we use
Wav2CLIP (Wu et al., 2022) to score the audio-
linguistic alignment during RL training, but other-
wise, the setup remains the same. Here, we break
the pairing in an audio captioning dataset Audio-
Caps (Kim et al., 2019) to evaluate unpaired audio
captioning performance. We follow an identical
evaluation protocol as in § 3.1, except that we only
use audio as input.

In Table 3, we only report the performance of
GPT-2-based baselines, as the unpaired image base-
lines (Laina et al., 2019; Honda et al., 2021) re-
quire object detectors and cannot be directly ap-
plied. ESPERachieves better results than baseline
models, which �rst rollout random text samples
conditioned on �xed (e.g. Sound of a ) or the
oracle prompts and then select ones with maximal
CLIP cosine similarity. Also, the style prompt tun-
ing positively contributes toESPER̀s performance,
increasing CIDEr by 4.86. Wav2CLIP (and pre-
liminary experiments with other audio encoders,
speci�cally, Guzhov et al. (2022); Wu et al. (2022)
which are also pretrained on an audio classi�ca-

tion dataset (Gemmeke et al., 2017; Chen et al.,
2020a)) appears to provide less accurate training
signal for ESPERcompared to image CLIP pre-
trained on large-scale image caption dataset (Rad-
ford et al., 2021). We expect this is the case not only
because audio classi�cation datasets are relatively
small (Zhao et al., 2021) but also because these
datasets do not offer rich natural language annota-
tions. Still, our model can generate audio-relevant
and plausible captions as described in Figure 8.

3.3 Generalization to Diverse Styles

We now experiment beyond standard image cap-
tioning setups to demonstrateESPER's capacity to
generate image-related texts of diverse styles. Here,
we evaluate two styles that can be supported by ex-
isting public corpora: visual news and dialogue.

3.3.1 Visual News

VisualNews (Liu et al., 2021a) includes 1.08 mil-
lion news images along with associated image cap-
tions and articles, sourced from four news sites.
The captions describe the image's relevance to the
news article instead of simply describing the literal
image contents. For our experiments, we assign
respective style pre�xes per news source. For a
fair comparison, we compareESPERwith models
that rely only on image inputs,3 e.g., Show Attend
Tell (Xu et al., 2015), from Liu et al. (2021a). We
also include the text-only style generator without
visual inputs as another baseline (Text-Only).

Results are in Table 4: zero-shotESPERoutper-
forms not only the text-only baseline but also the
supervised baseline in Bleu-4 and METEOR scores.
However, it lags behind the supervised model by
a wide margin in CIDEr terms of CIDEr. We at-
tribute this difference to a combined effect of the
news style and CLIP: while news consists of a myr-
iad of proper nouns, CLIP has not been exposed to
a majority of such terms. As a result,ESPERdoes
not generate as many proper nouns as in the ground
truth captions, decreasing the CIDEr score, which
takes the rarity of terms into account. By �netun-
ing the adaptor,ESPERovercomes this knowledge
gap and surpasses the baselines even in the CIDEr
score.

3Other baselines for VisualNews generate based on the
article text or keywords as inputs and hence are not directly
comparable to our framework.



Figure 4: Human evaluation of captions for each style prompt. We take the average of 5-point Likert-scale rating
from three annotators. V denotes visual relevance, I informativeness and F for �uency.

Figure 5: Evaluation on the ESP dataset. We report
CIDEr in this plot.

3.3.2 Visual Dialogue

VisDial (Das et al., 2017) is a dataset of iterative
dialogues conditioned on an image. Given an im-
age and previous dialogue act, the model is asked
to rank the likelihood of the 100 answer candidates.
After training ESPERwith the unpaired dialogue
style generator backbone, we rank the answer can-
didates by likelihood of the answers given the im-
age and the question. We use the validation set for
evaluation for fair comparison against previously
reported zero-shot baseline results (Murahari et al.,
2020). The baselines consist of ViLBERT (Lu et al.,
2019) and frozen ViLBERT (Lu et al., 2019) �ne-
tuned with a linear head.

The bottom half of Table 4 shows the VisDial
dataset re-ranking results. Zero-shotESPERim-
proves the baselines by a margin. It even outper-
forms the supervised ViLBERT-Head, showing that
ESPERis capable of discerning likely visual dia-
logues.

3.4 From One Image to Many Styles

While we observe thatESPERcan generate diverse
image-related texts, we still need to prove that this
diversity in style is induced by text prompts. A null
hypothesis is that there are identi�able and con-
sistent features found, e.g., only in news articles.
The model may have exploited this super�cial rela-
tion to generating news style captions. ESP dataset

from Section 3 is speci�cally designed to counter
this hypothesis as it exhibitsmultiple styled texts
for the same image.

Figure 5 we show thatESPERcan generate di-
verse text depending on textual style prompts.
ESPERoutperforms CLIPCap-MLP (Mokady et al.,
2021), a COCO-supervised baseline, demonstrat-
ing prompt-conditioned generation is necessary to
handle ESP dataset. Also, the text-only baseline
falls by a wide margin, indicating that the visual-
linguistic alignment is as important as the text di-
versity. Finally,ESPER-Style improves overESPER-
Free to show the effect of explicit style condition-
ing. For �ne-grained results, refer to Table 5 in
Appendix E.

3.5 Human Evaluations on ESP dataset

We conduct a human evaluation onESPER, CLIP-
Infer4, and CLIP-Infer-Style generated descriptions
as well as ground truth captions that complete
the following six prompts (caption: , social
media: , news: , blog: , instruction: ,
story: ) We choose random 100 images in ESP
dataset test split and ask English-pro�cient human
annotators to provide a 5-point Likert-scale if the
sentences: 1) are visually relevant to the image
(Vis), 2) provide informative and interesting con-
tent for the prompt (Inf), 3) and sound �uent and
human-like (Flu). Each sample is evaluated by
three annotators using the Amazon Mechanical
Turk platform. The results are shown in Figure 4.
On average,ESPERprovides more visually rele-
vant and informative content in every prompt than
CLIP-Infer. While CLIP-Infer has slightly more
�uent (Flu) descriptions on the story and instruc-
tion prompt, we found that this is likely due to their
descriptions being relatively short, thus having less
room for grammatical errors.

4We use a version of GPT2-base size model to generate
descriptions to be comparable to our generation framework.



Figure 6: ESPERZero-shot image captioning exam-
ples on various style prompts. The conditioning text
prompt is denoted in bold(i.e., “text” ). We mark visu-
ally relevant points withgreenand errors withred.

3.6 Qualitative Results

Figure 6, 7 presents zero-shot captioning results
on COCO images generated byESPER-style and
CLIP-Infer baseline (Tewel et al., 2021)5.

Figure 6 shows some diverse zero-shot captions
from COCO test split. Conditioning on both image
and pre�x,ESPERgenerates various visually sensi-
ble and informative captions. But Fig 6.(c) and (d)
show inaccurate caption compare to the CLIP-Infer
baseline. In (c), while the monk is holding an um-
brella, we can deduce that it is not raining from the
clear sky. However,ESPERconfuses the weather
condition depending on the text prompt. Also, the
model suffers from false bias in visual counting.
((d) Dialogue A: how many people are there B: 3)

Figure 7 shows generation results on the “recipe"

5We used their public demo for qualitative results.
https://replicate.com/yoadtew/zero-shot-image-to-text

Figure 7: ESPERgeneration results on custom task
prompts,(Recipe: ). ESPERhas never trained on recipe
prompts.

Figure 8: ESPERgeneration results on zero-shot au-
dio captioning. Each image is the keyframe of the orig-
inal video for illustration purposes.ESPER-Audio uses
only audio without visual input.

task prompt that wasnot previously pre-trained as
a style prompt.ESPERgenerate not only sensible
cake recipe generation in Fig 7.(b), but also reason-
able “recipe" even when it is not conditioned on
a food image (Fig 7.(a),(c)); similar performance
was observed for “My favorite poem" and “lyrics"
that GPT-2 can generate. In most cases, CLIP-Infer
generally produces short generations; and, because
it wasn't designed to adapt to individual styles, it
cannot as effectively generalize to custom prompts.
Figure 8 additionally demonstrates thatESPERcan
also adapt to the audio via wav2clip rewards.

4 Related Work

Visual-Language Pretraining. Successful vision-
language models pretrained on large-scale image-
text corpora have been proposed, e.g., BERT-
style (Devlin et al., 2019) models Tan and Bansal
(2019); Chen et al. (2020b); Li et al. (2020); Zellers
et al. (2021), encoder-decoder style models, Zhou
et al. (2020); Wang et al. (2021); Jia et al. (2021b)


